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A class of exactly solvable matrix models

F. Iachello a and A. Del Sol Mesa b

a Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven,
CT 06520-8120, USA

b Instituto de Fisica, UNAM, A. Postal 20-364, 01000 México, D.F., México
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Some exactly solvable matrix models are discussed. Possible applications to problems
in physical chemistry are pointed out, in particular the Hückel problem, the problem of
torsional vibrations of polyatomic molecules, and of vibrations of finite polymer chains.

1. Introduction

Several problems in quantum mechanics can be formulated in matrix form [3].
The eigenvalues and eigenvectors of the Hamiltonian matrices give the allowed en-
ergies and states. Although with the development of present day computers it has
become possible to diagonalize numerically large matrices, it is still of interest to
find explicit expressions for the eigenvalues and eigenvectors. The latter are partic-
ularly important since they can be used to calculate matrix elements of transition
operators. Intensities of transitions can often be measured and they provide impor-
tant information on the structure of a particular physical system. In this article, we
generalize some known results for nearest neighbor matrices to include second neigh-
bor matrices, full matrices and matrices that can be obtained by higher harmonic
oscillator overtones. Our aim is to write down explicit expressions for the eigen-
values and eigenvectors of matrices of arbitrary sizes. These can be obtained in
various ways. We use a recursive technique but the same results can be obtained
using graph theory [1] or other techniques. For example, the spectrum of the ring
matrices, Rn, discussed in section 2.2, corresponds to the spectrum of the cyclic
graph, Cn, in graph theory, and it is given in table 4 of [1]. This result is valid
for n = even. For n = odd and for the corresponding wave functions, see sec-
tion 2.2. Similarly, the spectrum of the full matrices, Kn, for n = 4 is given in
table 3 of [1]. Section 4 of this article gives the spectrum and eigenvalues for ar-
bitrary n. We also mention briefly the connection between the eigenvectors of the
matrices discussed here and the representations of finite groups. This connection has
also been noted earlier [1]. In the last section we point out possible applications.
The Hückel problem is also the standard application of graph theory, but torsional
oscillations and polymer chains are of interest too. Finally, the main goal of this pa-
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per is to provide the starting ground for the study of anharmonic systems. One of
us (F.I.), together with Oss, has proposed [7] an algebraic model of anharmonic vi-
brations based on the Lie algebra U (2). In the harmonic limit, this model reduces
to the case briefly discussed in section 5. The solution for anharmonic vibrations,
which relies on the results of the present paper, will be presented in a forthcoming
publication [9].

2. Nearest neighbor matrices

2.1. Line matrices, MN

The first set of matrices that we discuss are n× n matrices of the type

Mn =


α β 0 0 . . . 0 0
β α β 0 . . . 0 0
0 β α β . . . 0 0
...

...
...

... . . .
...

...
0 0 0 0 . . . β α

 , (1)

where α,β are arbitrary real numbers, and columns and rows are labelled by 1, . . . ,n.
These matrices arise, for example, in models of linear chains of coupled oscillators
with nearest neighbor interactions (see figure 1). Solutions for this set of matrices
are well known and have been obtained in a variety of ways. We consider here, for
purposes of generalization, a recursive solution.

Since Mn is tridiagonal, its eigenvalues and eigenvectors can be found easily.
The eigenvalues are obtained by solving

det(Mn −EIn) = 0, (2)

where In is the unit n×n matrix. Denoting by M ′n = Mn−EIn, one has the recursion
relation

detM ′n = (α−E) detM ′n−1 − β2 detM ′n−2. (3)

Figure 1. A linear chain of coupled oscillators.
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But

detM ′n = det





β 0 0 . . . 0 0

0 β 0 . . . 0 0

0 0 β . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 0 β



×



α−E
β

1 0 . . . 0 0

1
α−E
β

1 . . . 0 0

0 1
α−E
β

. . . 0 0

...
...

... . . .
...

...

0 0 0 . . . 1
α−E
β




= βn det M̃n, (4)

where M̃n is given by the second matrix in equation (4). The eigenvalue condition
detM ′n = 0 then becomes βn det M̃n = 0, which, for β 6= 0, gives

det M̃n = 0. (5)

The recursion relation for det M̃n (n > 3) can be simply obtained:

det M̃n = α̃ det M̃n−1 − det M̃n−2, (6)

where α̃ = (α−E)/β. By making the change of variable E = α−2β cos θ, we obtain

det M̃n = 2 cos θ det M̃n−1 − det M̃n−2, (7)

whose solution is

det M̃n =
sin(n+ 1)θ

sin θ
, (8)

as one can easily verify by inserting (8) into (7). Condition (5) then gives the eigen-
values

(n+ 1)θ = kπ, k = 1, 2, . . . ,n, (9)

and, hence,

Ek = α− 2β cos θk, θk =
kπ

(n+ 1)
, k = 1, 2, . . . ,n. (10)
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The eigenvectors can also be obtained and are given by

ψk =
1√
Nk


x1

x2
...
xn

 , xν = (−)n−ν sin(νθk), ν = 1, 2, . . . ,n, (11)

with

Nk =
n∑
ν=1

sin2(νθk) =
(n+ 1)

2
. (12)

When n → ∞, θk goes continuously from 0 to π, and (4) leads to the well-known
formula (dispersion relation)

E(κ) = α− 2β cos(κa), 0 6 κ < π

a
, (13)

where a is a scale factor.

2.2. Ring matrices, Rn

Another set of matrices of interest is that composed of n×n matrices of the type

Rn =


α β 0 0 . . . 0 β
β α β 0 . . . 0 0
0 β α β . . . 0 0
...

...
...

... . . .
...

...
β 0 0 0 . . . β α

 , (14)

with α,β real. These matrices arise, for example, in models of rings of coupled
oscillators with nearest neighbor interactions (see figure 2). (In graph theory [1],
figure 2 is the cyclic graph Cn.) The eigenvalues and eigenvectors of the matrices

Figure 2. A ring of coupled oscillators.
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Rn can also be obtained easily in closed form for any n. Introduce, as before, R′n =
Rn −EIn. Then

detR′n = det





β 0 0 . . . 0 0

0 β 0 . . . 0 0

0 0 β . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 0 β





α̃ 1 0 . . . 0 1

1 α̃ 1 . . . 0 0

0 1 α̃ . . . 0 0
...

...
... . . .

...
...

1
...

... . . . 1 α̃




= βn det R̃n, (15)

where R̃n is given by the second matrix in (15) and α̃ = (α − E)/β as before. The
eigenvalue condition for β 6= 0 is here

det R̃n = 0. (16)

But now

det R̃n = α̃ det M̃n−1 − det



1 1 0 . . . 0 0

0 α̃ 1 . . . 0 0

0 1 α̃ . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . α̃ 1

1 0 0 . . . 1 α̃



+ (−1)n+1 det



1 α̃ 1 . . . 0 0

0 1 α̃ . . . 0 0

0 0 1 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 1 α̃

1 0 0 . . . 0 1


, (17)

and the matrices on the right-hand side are (n− 1)× (n− 1). Changing n− 2 times
the rows and columns in the last determinant, one obtains the previous one. Thus,

det R̃n = α̃ det M̃n−1 − 2 det



1 1 0 . . . 0 0
0 α̃ 1 . . . 0 0
0 1 α̃ . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . α̃ 1
1 0 0 . . . 1 α̃


. (18)
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Proceeding further,

det R̃n = α̃ det M̃n−1 − 2 det M̃n−2 + 2 det


0 1 0 . . . 0 0
0 α̃ 1 . . . 0 0
0 1 α̃ . . . 0 0
...

...
... . . .

...
...

1 0 0 . . . 1 α̃

 . (19)

The last determinant can be reduced to (−1)n−1 and thus one obtains the recursion
relation (n > 3)

det R̃n = α̃ det M̃n−1 − 2 det M̃n−2 + 2(−1)n−1. (20)

Since we have already obtained det M̃n in the previous subsection, we have, upon
substitution α̃ = 2 cos θ,

det R̃n = 2

[
cos θ

sinnθ
sin θ

− sin(n− 1)θ
sin θ

+ (−1)n−1
]

= 2
[

cos nθ − (−1)n
]
. (21)

The eigenvalue condition (16) gives then the solutions

θ =


2kπ
n

, k = 1, 2, 3, . . . ,n, n = even,

(2k + 1)π
n

, k = 1, 2, 3, . . . ,n, n = odd.

(22)

Reintroducing the eigenvalues E, we obtain

Ek = α− 2β cos θk, θk =


2kπ
n

, n = even,

(2k + 1)π
n

, n = odd,

k = 1, 2, . . . ,n, n > 3. (23)

These eigenvalues are similar but not identical to those of the matrices Mn, the most
notable difference being the factor of two in 2kπ/n and the odd–even alternation. The
eigenvectors can also be obtained. From (23) one can see that in this case there are
eigenvalues which are not repeated and eigenvalues which are repeated twice.

(i) For the single eigenvalues we have the eigenvectors

ψk =
1√
Nk


x1

x2

...

xn

 , xν = (−1)n−ν cos(νθk), Nk =
n∑
ν=1

cos2(νθk) = n/2. (24)
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(ii) For the double eigenvalues we have

ψk =
1√
Nk


x1

x2

...

xn

 , xν = (−1)n−ν cos(νθk), Nk =
n

2
,

(25)

ψ′k =
1√
N ′k


x′1
x′2
...

x′n

 , x′ν = (−1)n−ν sin(νθk), N ′k =
n

2
.

It is interesting to note at this stage that the resulting eigenvectors are (real) represen-
tations of the cyclic group Cn and that the method discussed here can be viewed as a
convenient way to generate these representations no matter how large is n. Note also
the odd–even alternation, which is not important for large n, but plays a major role
for small n.

3. Second neighbor matrices

The set of matrices (1) arises in models of linear chains with nearest neighbor in-
teractions. This set can be generalized to linear chains with second, third, etc. neighbor
interactions. We consider here specifically the case of second neighbor interactions,

Tn =


α 0 β 0 . . . 0 0
0 α 0 β . . . 0 0
β 0 α 0 . . . 0 0
...

...
...

... . . .
...

...
0 0 0 0 . . . 0 α

 . (26)

The recurrence relations for the determinants can also be solved in this case. The
solutions provide the eigenvalue and eigenvectors. The eigenvalues can be written as

Ek = α− 2β cos θk (27)

as before. The values of θk are given by:

(i) n = odd,

θk =
2kπ

(n+ 3)
, k = 1, 2, . . . ,

(n+ 3)
2

− 1,
(28)

θ′k′ =
2k′π

(n+ 1)
, k′ = 1, 2, . . . ,

(n+ 1)
2

− 1.
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(ii) n = even,

θk =
2kπ

(n+ 2)
, k = 1, 2, . . . ,

(n+ 2)
2

− 1, (29)

repeated twice.

The eigenvectors are:

(i) n = odd,

ψk =
1√
Nk


x1

x2

...

xn

 ,

x2τ = 0, τ = 1, 2, . . . ,
(n− 1)

2
,

xτ ′ = (−1)(n−τ ′)/2 sin

[
(τ ′ + 1)θk

2

]
, τ ′ = 2ρ+ 1, ρ = 0, 1, . . . ,

(n− 1)
2

,

Nk =
(n+ 3)

4
, (30)

and

ψk′ =
1√
Nk′


x′1
x′2
...

x′n

 ,

x2τ+1 = 0, τ = 0, 1, . . . ,
(n− 1)

2
,

xτ ′ = (−1)(n−τ ′−1)/2 sin

(
τ ′θ′k′

2

)
, τ ′ = 2ρ′, ρ′ = 1, 2, . . . ,

(n− 1)
2

,

Nk′ =
(n+ 1)

4
. (31)

(ii) n = even. In this case all roots are repeated twice. It is convenient to separate
them and write the eigenvectors as

ψk =
1√
Nk


x1

x2

...

xn

 ,

x2τ = 0, τ = 1, 2, . . . ,
n

2
,



F. Iachello, A. Del Sol Mesa / Exactly solvable matrix models 353

xτ ′ = (−1)(n−τ ′−1)/2 sin

[
(τ ′ + 1)

2
θk

]
, τ ′ = 2ρ+ 1, ρ = 0, 1, . . . ,

(n− 2)
2

,

Nk =
(n+ 2)

4
, (32)

and

ψ′k =
1√
N ′k


x′1
x′2
...

x′n

 ,

x2σ+1 = 0, σ = 0, 1, . . . ,
(n− 2)

2
,

xσ′ = (−1)(n−σ′)/2 sin

[
(σ′)θ′k′

2

]
, σ′ = 2ρ, ρ = 1, 2, . . . ,

n

2
,

N ′k =
(n+ 2)

4
. (33)

Again it is important to note that, when n→∞, all eigenvalues are given by the
same expression (27) with θk = 2πk/n, to be compared with the eigenvalues of the
matrices for nearest neighbor interaction (θk = πk/n). However, major differences
occur when n is small, as one can see from (28) and (29).

4. Full matrices

The last set of matrices that we discuss in this article is the set of n×n matrices

Kn =


α β β . . . β β
β α β . . . β β
β β α . . . β β
...

...
... . . .

...
...

β β β . . . β α

 , (34)

with α and β real. These matrices arise in models of coupled oscillators with equal in-
teractions among all the oscillators. The eigenvalues and eigenvectors can be obtained
directly from

det(Kn −EIn) = 0. (35)

One can easily verify that the eigenvalues are{
E = α+ (n− 1)β, singly degenerate,

E = α− β, (n− 1) times degenerate.
(36)

The corresponding eigenvectors are:
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(a) For the case E = α+ (n− 1)β,

Y =
1√
n


1
1
...
1

 . (37)

This eigenvectors transforms as the totally symmetric representation (n) of Sn under
permutation of the indices, with Young tableau [2]

(n) ≡
n︷ ︸︸ ︷

�� . . .� . (38)

(b) For the case E = α− β, one can write (n− 1) independent vectors

X1 =



−(n− 1)

1

1
...

1


, X2 =



1

−(n− 1)

1
...

1


, . . . , Xn−1 =



1

1

1
...

−(n− 1)

1


. (39)

These vectors can be orthonormalized,

X ′1 =



−
√

(n− 1)
n

1√
(n− 1)n

...
1√

(n− 1)n


, X ′2 =



0

−
√

(n− 2)
(n− 1)
1√

(n− 1)(n− 2)
...
1√

(n− 1)(n− 2)


, . . . ,

(40)

X ′n−1 =



0

0
...

− 1√
2

1√
2


.
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They transform as the (n− 1)-dimensional representation of Sn,

(n− 1, 1) =

n−1︷ ︸︸ ︷
�� . . .�
�

. (41)

The eigenvectors (40) are not only orthogonal to each other but they are also orthogonal
to the eigenvector Y . They can be used to generate a basis for the representations
of Sn.

5. Generalizations. Nearest neighbor matrices

In order to generalize the class of exactly solvable matrices, we briefly revert to
the algebraic form from which the matrices of sections 2–4 arise. (Models of this type
are well known. See, for example, [10].) Introduce Bose creation and annihilation
operators [

bj , b
†
j′
]

= δjj′ , [bj , bj′] =
[
b†j , b

†
j′
]

= 0, j, j′ = 1, . . . ,n. (42)

Write down the Hamiltonian

H = α
∑
j

b†jbj + β
∑
j 6=j′

b†jbj′ (43)

and vacuum

|0〉 ≡
n︷ ︸︸ ︷

|00 . . . 0〉 . (44)

The matrices of sections 2–4 are the representative matrices of H in the space of one
boson (one quantum of vibration). We denote this space by v = 1. There are n basis
states in this space. The jth state is

|1j〉 ≡ b†j |0〉 = |00 . . . 1j . . . 0〉. (45)

Consider next the space with two quanta, v = 2. The two quanta can be either in the
same oscillator

|2j〉 ≡
1√
2
b†2j |0〉 = |00 . . . 2j . . . 0〉, (46)

or in different oscillators

|1j1j′〉 ≡ b†jb
†
j′ |0〉 = |00 . . . 1j . . . 1j′ . . . 0〉. (47)

There are n states in (46) and n(n− 1)/2 in (47) for a total of n(n+ 1)/2.
Since the Hamiltonian H can be diagonalized for any v by elementary methods,

the matrices representative of H can also be exactly diagonalized. We list some typical
cases.
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5.1. Line matrices, M (2)
n

The representative matrix, for n = 3, is

M (2)
3 =



2α
√

2β 0 0 0 0√
2β 2α β

√
2β 0 0

0 β 2α 0 β 0
0

√
2β 0 2α

√
2β 0

0 0 β
√

2β 2α
√

2β
0 0 0 0

√
2β 2α

 , (48)

where the basis is labelled in the order 12, 12, 13, 22, 23, 32. Matrices for n
generic, M (2)

n , can be constructed by taking matrix elements of H in the basis
12, 12, . . . , 1n, 22, 23, . . . , 2n, 32, . . . , 3n, . . . ,n2, where 12 denotes the state with one
quantum in oscillator 1 and one in 2, etc. The eigenvalues of these matrices are found
to be

Ek,k′ = 2α − 2β(cos θk + cos θk′), k 6 k′, k, k′ = 1, 2, 3, . . . ,n,

θk =
kπ

(n+ 1)
. (49)

In order to write down the corresponding eigenvectors it is convenient to use the
algebraic notation of equations (42)–(44). In this notation, the eigenvectors ψk of (11)
are written as

|ψk〉 =
∑
j

(−)n−j sin(jθk)|0 . . . 1j . . . 0〉. (50)

Similarly, the eigenvectors of M (2)
n can be written as

|ψkk′〉=
∑
j<j′

(−)j+j
′

√
2

[
sin(jθk) sin(j′θk′) + sin(jθk′) sin(j′θk)

]
|0 . . . 1j . . . 1j′ . . . 0〉

+
∑
j

sin(jθk) sin(jθk′)|0 . . . 2j . . . 0〉. (51)

The eigenvectors in (51), which correspond to the double vibration of a harmonic
linear chain, are useful in the evaluation of anharmonic contributions to this chain (for
example, by perturbation theory), as discussed in [9].
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5.2. Ring matrices, R(2)
n

The representative matrix, for n = 3, is

R(2)
3 =



2α
√

2β
√

2β 0 0 0√
2β 2α β

√
2β β 0√

2β β 2α 0 β
√

2β
0

√
2β 0 2α

√
2β 0

0 β β
√

2β 2α
√

2β
0 0

√
2β 0

√
2β 2α


. (52)

Matrices for n generic, R(2)
n , can be constructed by taking matrix elements of H . They

differ from those of A by additional non-zero elements due to the cyclic conditions.
The eigenvalues of these matrices are found to be

Ekk′ = 2α− 2β(cos θk + cos θk′), k 6 k′, k, k′ = 1, 2, . . . ,n;

θk =


2kπ
n

, n = even,

(2k + 1)π
n

, n = odd.

(53)

The corresponding eigenvectors can be constructed from those of section 2.2 in a way
similar to that leading to (51). It is interesting to note that while the eigenvectors of
section 2.2 transform as representations of the cyclic group Cn, those obtained here
transform as products of representations of Cn. Second neighbor matrices can also
be generalized but, since this generalization is straigthforward, we do not discuss it
here.

6. Generalizations. Full matrices

The full matrices of section 4 can also be generalized. For n = 3, the matrix
K(2)

3 coincides with R(2)
3 . This is no longer the case for n > 3. Full matrices K(2)

n can
be constructed again by taking matrix elements of H and they differ from the previous
ones by having non-zero matrix elements 〈j2|H|jj′〉 for any j′. The eigenvalues of
these matrices for generic n are found to be

E =


2α+ 2(n− 1)β, singly degenerate,

2α+ (n− 2)β, (n− 1) times degenerate,

2α− 2β,
n(n− 1)

2
times degenerate.

(54)

The corresponding eigenvectors transform as the following representations of Sn:
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(n, 0)≡�� . . .�, single degenerate,

(n− 1, 1)≡
�� . . .�
� , (n− 1) times degenerate, (55)

(n− 2, 2)≡
�� . . .�
�� ,

n(n− 1)
2

times degenerate,

7. Further generalizations

The matrix representative of the Hamiltonian (43) for any number of quanta, v,
and any number of oscillators, n, with nearest neighbour interactions and all interac-
tions on a line and on a ring can be diagonalized in closed form. The generalization
of the line and ring matrix solution is obvious and yields

Ekk′k′′... = nα− 2β (cos θk + cos θk′ + cos θk′′ + · · ·)︸ ︷︷ ︸
v times

, (56)

with θk, θk′ , . . . , as before. (This solution can also be obtained easily from the al-
gebraic Hamiltonian (43).) The generalization of the full matrices Kn to K(v)

n can
also be constructed from a knowledge of the representations of the permutation group,
Sn, and their degeneracies. The representations that occur for a given v are (n, 0),
(n− 1, 1), . . . , (n− v, v).

8. Applications

The results of sections 2–6 can be applied to the study of a variety of problems in
physics and chemistry. In this article, we mention only a selected number of problems
in physical chemistry.

8.1. Rings

8.1.1. Hückel problem
In the treatment of π orbitals in molecules such as formaldehyde, ethylene, and

benzene, Hückel [5] introduced an approximate molecular orbital method which leads
to a matrix representative of the Hamiltonian of the type discussed in section 3. (This
is also the main application of graph theory [1].) In particular, for benzene, the matrix
representative is R6:

R6 =


α β 0 0 0 β
β α β 0 0 0
0 β α β 0 0
0 0 β α β 0
0 0 0 β α β
β 0 0 0 β α

 . (57)
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The eigenvalues of this matrix can be simply obtained using (23) and are given by

E =

{
α± 2β, singly degenerate,

α± β, doubly degenerate.
(58)

The corresponding eigenvectors are

ψ(A) =
1√
6

(ψ1 + ψ2 + ψ3 + ψ4 + ψ5 + ψ6),

ψ(E1) =


1√
12

(ψ1 − ψ2 − 2ψ3 − ψ4 + ψ5 + 2ψ6),

1
2

(−ψ1 − ψ2 + ψ4 + ψ5),
(59)

ψ(E2) =


1√
12

(−ψ1 − ψ2 + 2ψ3 − ψ4 − ψ5 + 2ψ6),

1
2

(−ψ1 + ψ2 − ψ4 + ψ5),

ψ(B) =
1√
6

(−ψ1 + ψ2 − ψ3 + ψ4 − ψ5 + ψ6).

Figure 3 shows the eigenvalues of equation (57). The eigenvectors here are
representations of the cyclic group Cn. In the case of benzene, they are representations
of C6. The four distinct eigenvectors are the representations A (single degenerate),
E1 (doubly degenerate), E2 (doubly degenerate) and B (singly degenerate). Using
the results of section 7, Hückel problem can be solved for a ring of any arbitrary
dimension, n.

In addition to the application to electronic configurations, generalizations of the
matrix (57) have been used in the study of the vibrational spectroscopy of benzene
(see, for example, [8]).

8.1.2. Torsional oscillations
In the problem of torsional vibrations of molecules (see, for example, [4]) such

as toluene, phenol and ethylene one needs the solution of the wave equation (in di-
mensionless units)[

− d2

dφ2 + V (φ)

]
ψ(φ) = Eψ(φ), V (φ) =

1
2
Vn(1− cos nφ), φ ∈ [0, 2π). (60)

The splitting of the degenerate levels in the potential (60) due to tunnelling through the
barriers, figure 4, can be analyzed in matrix form. The matrices are Rn. For n = 6, a
case of interest in toluene (C6H5CH3), and nitromethane (CH3NO2), the solutions are
as discussed in section 8.1.1. In order not to repeat that calculation, we consider here
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Figure 3. Splitting of degenerate electronic levels in a C6 ring. The quantity β is usually negative.

the case of n = 3. This case is of interest in a variety of molecules, such as methyl
alcohol and ethylene. The representative matrix is

R3 =

α β β
β α β
β β α

 . (61)

The eigenvalues of this matrix can be simply obtained using (23) and are trivially
given by

E =

{
α+ 2β, singly degenerate,

α− β, doubly degenerate.
(62)

The corresponding eigenvectors are

ψ(A) =
1√
3

(ψ1 + ψ2 + ψ3),

(63)

ψ(E) =


1√
6

(ψ1 + ψ2 − 2ψ3)

1√
2

(−ψ1 + ψ2)
.

Figure 4 shows the eigenvalues of equation (62). The eigenvectors are representations
of C3. The singly degenerate eigenvector is the symmetric representation A and the
doubly degenerate eigenvector is the representation E. Using the results of section 2.2,
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Figure 4. Splitting of degenerate torsional oscillations in metyl alcohol (n = 3).

the splitting pattern of degenerate levels due to barrier penetration can be obtained for
a ring of any dimension, n.

8.2. Lines

In the study of finite polymer chains, Snyder [11] introduced a simple model of
coupled harmonic oscillators which leads to matrix representatives of the type (1). In
particular, Snyder studied the frequencies of methylene rocking and wagging modes
in n-paraffins from n-C20H42 through n-C30H62. The matrix representations of the
Hamiltonian for this series of paraffins are M20 through M30. For nearest neighbor
interactions, the energy eigenvalues are given by (10)

Ek = α− 2β cos θk, θk =
kπ

(n+ 1)
, k = 1, 2, . . . ,n. (64)

By studying the infrared spectra of paraffins in the range n = 20–30, it is possible
to determine the coefficients α and β. Equation (64) can then be used to predict the
frequencies in the range n = 2–20, where end effects become important, and for the
infinite chain (polyethylene). If second neighbor interactions are included, the situation
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is more complex, as shown in section 3. However, when n is large, the solution with
both first and second neighbor interactions is approximately given by

Ek = α− 2β1 cos θk − 2β2 cos 2θk, (65)

where β1 and β2 represent the strengths of first and second neighbor interactions. The
corrections to this formula are of order 1/n (compare equation (10) with equations (28)
and (29)). The methods discussed in this article allow one to study this problem more
accurately. They also allow one to study overtone and combination modes. The energy
eigenvalues for these modes are given in sections 5 and 7:

Ek,k′ = 2α − 2β(cos θk + cos θk′), k 6 k′, k, k′ = 1, 2, 3, . . . ,n,

θk =
kπ

(n+ 1)
. (66)

9. Conclusions

In this article, we have given explicit expressions for the eigenvalues and eigen-
vectors of some finite and infinite dimensional matrices. These matrices appear in a
variety of problems in physics and chemistry. Some of these applications have been
indicated. The set of solvable matrices presented here is by no means complete and
others can be found. Matrix models are closely related to algebraic models (see, for
example, [6]), since the latter can always be represented in the space of matrices. Solv-
able matrix models thus imply solvable algebraic models and vice versa. The matrices
presented here are related to the algebraic formulation of coupled one-dimensional har-
monic oscillators (a relatively simple problem). By exploring further the connection
between algebras and matrices, we have been able recently to provide solutions for
a class of algebraic models describing coupled anharmonic oscillators. These results
will be presented elsewhere [9].
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